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Abstract

To accelerate the training of kernel machines, we propose to map the input data
to a randomized low-dimensional feature space and then apply existing fast linear
methods. Our randomized features are designed so that the inner products of the
transformed data are approximately equal to those in the feature space of a user
specified shift-invariant kernel. We explore two sets of random features, provide
convergence bounds on their ability to approximate various radial basis kernels,
and show that in large-scale classification and regression tasks linear machine
learning algorithms that use these features outperform state-of-the-art large-scale
kernel machines.

1 Introduction

Kernel machines such as the Support Vector Machine are attractive because they can approximate
any function or decision boundary arbitrarily well with enough training data. Unfortunately, meth-
ods that operate on the kernel matrix (Gram matrix) of the data scale poorly with the size of the
training dataset. For example, a dataset with half a million training examples might take days to
train on modern workstations. On the other hand, specialized algorithms for linear Support Vector
Machines and regularized regression run much more quickly when the dimensionality of the data
is small because they operate on the covariance matrix rather than the kernel matrix of the training
data [1, 2]. We propose a way to combine the advantages of the linear and nonlinear approaches.
Inspired by randomized algorithms for approximating kernel matrices (e.g., [3, 4]), we efficiently
convert the training and evaluation of any kernel machine into the corresponding operations of a
linear machine by mapping data into a relatively low-dimensional randomized feature space. Our
experiments show that random features combined with very simple linear learning techniques com-
pete favorably with state-of-the-art kernel-based classification and regression algorithms. Random
features significantly reduce the computation needed for training, and obtain similar or better testing
error.

The kernel trick is a simple way to generate features for algorithms that depend only on the inner
product between pairs of input points. It relies on the observation that any positive definite function
k(x,y) with x,y € R defines an inner product and a lifting ¢ so that the inner product between
lifted datapoints can be quickly computed as (¢ (x), #(y)) = k(x,y). The cost of this convenience
is that algorithms access the data only through evaluations of k(x,y), or through the kernel ma-
trix consisting of k applied to all pairs of datapoints. As a result, large training sets incur large
computational and storage costs.

Instead of relying on the implicit lifting provided by the kernel trick, we propose explicitly mapping
the data to a low-dimensional Euclidean inner product space using a randomized feature map z :
R? — RP so that the inner product between a pair of transformed points approximates their kernel

evaluation:
k(x,y) = (9(x), d(y)) = z(x)'z(y). (1)

Unlike the kernel’s lifting ¢, z is low-dimensional. Thus, we can simply transform the input with
z, and then apply fast linear learning methods to approximate the answer of the corresponding
nonlinear kernel machine. In what follows, we show how to construct feature spaces that uniformly
approximate popular shift-invariant kernels k(x — y) to within € with only D = O(de?log %)
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dimensions, and empirically show that excellent regression and classification performance can be
obtained for even smaller D.

In addition to giving us access to extremely fast learning algorithms, these randomized feature maps
also provide a way to quickly evaluate the machine. With the kernel trick, evaluating the machine
at a test point x requires computing f(x) = Zf\;l ¢;ik(x;,x), which requires O(Nd) operations to
compute and requires retaining much of the dataset unless the machine is very sparse. This is often
unacceptable for large datasets. On the other hand, after learning a hyperplane w, a linear machine
can be evaluated by simply computing f(z) = w’z(x), which, with the randomized feature maps
presented here, requires only O(D + d) operations and storage.

We demonstrate two randomized feature maps for approximating shift invariant kernels. Our first
randomized map, presented in Section 3, consists of sinusoids randomly drawn from the Fourier
transform of the kernel function we seek to approximate. Because this map is smooth, it is well-
suited for interpolation tasks. Our second randomized map, presented in Section 4, partitions the
input space using randomly shifted grids at randomly chosen resolutions. This mapping is not
smooth, but leverages the proximity between input points, and is well-suited for approximating ker-
nels that depend on the L, distance between datapoints. Our experiments in Section 5 demonstrate
that combining these randomized maps with simple linear learning algorithms competes favorably
with state-of-the-art training algorithms in a variety of regression and classification scenarios.

2 Related Work

The most popular methods for large-scale kernel machines are decomposition methods for solving
Support Vector Machines (SVM). These methods iteratively update a subset of the kernel machine’s
coefficients using coordinate ascent until KKT conditions are satisfied to within a tolerance [5,
6]. While such approaches are versatile workhorses, they do not always scale to datasets with
more than hundreds of thousands of datapoints for non-linear problems. To extend learning with
kernel machines to these scales, several approximation schemes have been proposed for speeding
up operations involving the kernel matrix.

The evaluation of the kernel function can be sped up using linear random projections [3]. Throwing
away individual entries [3] or entire rows [4, 7, 8] of the kernel matrix lowers the storage and compu-
tational cost of operating on the kernel matrix. These approximations either preserve the separability
of the data [4], or produce good low-rank or sparse approximations of the true kernel matrix [3, 7].
Fast multipole and multigrid methods have also been proposed for this purpose, but, while they ap-
pear to be effective on small and low-dimensional problems, to our knowledge, their effectiveness
has not been demonstrated on large datasets. Further, the quality of the Hermite or Taylor approxi-
mation that these methods rely on degrades exponentially with the dimensionality of the dataset [9].
Fast nearest neighbor lookup with KD-Trees has been used to approximate multiplication with the
kernel matrix, and in turn, a variety of other operations [10].

We compare our work to the Core Vector Machine (CVM), a state-of-the-art technique that takes
an altogether different approach than those thus far discussed [12]. CVM transforms a classifica-
tion problem into a support vector data-description problem, and solves this using a fast minimum-
enclosing ball algorithm that randomly samples the training data.

Unlike previous work, instead of approximating the kernel matrix, our work approximates the kernel
function directly. The feature map we present in Section 4 is reminiscent of KD-trees in that it
partitions the input space using multi-resolution axis-aligned grids similar to those developed in
[11] for embedding linear assignment problems.

3 Random Fourier Features

Our first set of random features consists of random Fourier bases cos(w'x + b) where w € R?
and b € R are random variables. These mappings project data points on a randomly chosen line,
and then pass the resulting scalar through a sinusoidal function (see Figure 1 and Algorithm 1).
Drawing the direction of these lines from an appropriate distribution guarantees that the product of
two transformed points will approximate a desired shift-invariant kernel.
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Figure 1: Random Fourier Features. Each component of the feature map z(x) projects x onto a random
direction w drawn from the Fourier transform p(w) of k(A), and wraps this line onto the unit circle in R>.
After transforming two points x and y in this way, their inner product is an unbiased estimator of k(x,y). The
mapping z(x) = cos(w’x + b) additionally rotates this circle by a random amount b and projects the points
onto the interval [0, 1]. The table lists some popular shift-invariant kernels and their Fourier transforms. To
deal with non-isotropic kernels, we can first whiten the data and apply one of these kernels

The following classical theorem from harmonic analysis provides the key insight behind this trans-
formation:

Theorem 1 (Bochner [13]). A continuous kernel k(x,y) = k(x —y) on R is positive definite if
and only if k(0) is the Fourier transform of a non-negative measure.

If a shift-invariant kernel k(4) is properly scaled, Bochner’s theorem guarantees that its Fourier
transform p(w) is a proper probability distribution. Defining (., (x) = €/“'*, we have

Koc=y) = [ p)e ) do = BLICGOLH)'] @

80 (,(x)Cu(y)* is an unbiased estimate of k(x,y) when w is drawn from p.

Since both the probability distribution p(w) and the kernel k(A) are real, the integral (2) converges
when the complex exponentials are replaced with cosines. Therefore, we may obtain a real-valued
mapping that satisfies the condition E[z,,(x)z,(y)] = k(x,y) by setting z,,(x) = v/2 cos(w'x+b),
where w is drawn from p(w) and b is drawn uniformly from [0, 27]. That z,,(x)z,(y) has expected
value k(x,y) is a consequence of the sum of angles formula.

We can lower the variance of the estimate of the kernel by concatenating D randomly chosen z,,

into one D-dimensional vector z and normalizing each component by v/ D. The inner product

z(x)'z(y) = 537 2, (x)z., (y) is a sample average of z,, and is therefore a lower variance
Y =1 j=1~wj w; Y p g w

approximation to the expectation (2).

Since z, is bounded between ++/2 and —V/2 for a fixed pair of points x and y, Hoeffd-
ing’s inequality guarantees exponentially fast convergence in D between z(x)'z(y) and k(x,y):
Pr[|z(x)'z(y) — k(x,y)| > €] < 2exp(—De?/4). Building on this observation, a much stronger
assertion can be proven for every pair of points in the input space simultaneously:

Claim 1 (Uniform convergence of Fourier features). Let M be a compact subset of R® with diam-
eter diam(M). Then, for the mapping z defined in Algorithm 1, we have

where o2

5 = Eplw'w] is the second moment of the Fourier transform of k.

Further, sup, ,caq|2(x)'2(y) — k(y,x)| < € with any constant probability when D =
0 (% log op diam(./\/l)).

The proof of this assertion first guarantees that z(x)'z(y) is close to k(x — y) for the centers of an
e-net over M x M. This result is then extended to the entire space using the fact that the feature
map is smooth with high probability. See the Appendix for details.
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By a standard Fourier identity, the scalar 0127 is equal to the trace of the Hessian of k at 0. It
quantifies the curvature of the kernel at the origin. For the spherical Gaussian kernel, k(x,y) =
exp (—7[lx — y||?), we have 02 = 2dy.

Algorithm 1 Random Fourier Features.

Require: A positive definite shift-invariant kernel k(x,y) = k(x — y).
Ensure: A randomized feature map z(x) : RY — RP so that z(x)'z(y) ~ k(x — y).
Compute the Fourier transform p of the kernel k: p(w) = 5= [ e~I90k(8) dA.

Draw D iid samples wy, -+ ,wp € RY from p and D iid samples by,...,bp € R from the
uniform distribution on [0, 27].

Let Z(X) = Q/% [Cos(w'lx+b1) cos(w'Dx+bD)]/,

4 Random Binning Features

Our second random map partitions the input space using randomly shifted grids at randomly chosen
resolutions and assigns to an input point a binary bit string that corresponds to the bins in which it
falls (see Figure 2 and Algorithm 2). Because it uses rectilinear grids, this mapping is well-suited
for kernels that depend only on the L, distance between pairs of points. The grids are constructed so
that the probability that two points x and y are assigned to the same bin is proportional to k(x,y).
The inner product between a pair of transformed points is proportional to the number of times the
two points are binned together, and is therefore an unbiased estimate of k(x,y).

10000000, 01000000

00100000 00010000 .

00001000 . 00000100

0Q000010 60000001 k(xi,xj) Z1(x7‘,)/21(xj) zz(xl),zz(xj) Zg(xi)/z:;(x‘j) Z(Xi)/z(Ij)

Figure 2: Random Binning Features. (left) The algorithm repeatedly partitions the input space using a ran-
domly shifted grid at a randomly chosen resolution and assigns to each point x the bit string z(x) associated
with the bin to which it is assigned. (right) The binary adjacency matrix that describes this partitioning has
2(x;)'z(x;) in its ijth entry and is an unbiased estimate of kernel matrix.

We first describe a randomized mapping to approximate the “hat” kernel kpq:(x,y;d) =

|z—y|
5

max (0, 1-— ) on a segment of R, then show how to construct mappings for more general

separable multi-dimensional kernels. Partition the real number line with a grid of pitch J, and
shift this grid randomly by an amount v drawn uniformly at random from [0, §]. This grid parti-
tions the real number line into intervals [u + nd, u + (n + 1)d] for all integers n. The probabil-

ity that two points = and y fall in the same bin in this grid is max (0,1 — @) [11]. In other

r—u

words, if we number the bins in the grid so that a point z falls in bin # = [*5*] and y falls
in bin § = [¥5%], then Pr [ = 9|6] = kpat(z,y;0). If we encode & as a binary indicator
vector z(x) over the bins, z(x)'2(y) = 1 if « and y fall in the same bin and zero otherwise, so
Pry[z(z)'2(y) = 1|0] = Eu[z(2) 2(y)|6] = knat(z,y; §). Therefore z is a random map for kpq¢.

Now consider shift-invariant kernels that can be written as convex combinations of hat kernels on a
compact subset of R x R: k(x,y) = [ knat(x,y; 6)p(6) db. If the pitch § of the grid is sampled
from p, z again gives a random map for k because s, [z(z) 2(y)] = Es[Eu[z(z) 2(y)|d]] =
Eslknat(x,y;9)] = k(x,y). That is, if the pitch § of the grid is sampled from p, and the shift u is
drawn uniformly from [0, ] the probability that x and y are binned together is k(x,y). Lemma 1 in
the appendix shows that p can be easily recovered from k by setting p(§) = dk(0). For example, in
the case of the Laplacian kernel, ki qplacian (2, ) = exp(—|z — yl), p(d) is the Gamma distribution
d exp(—0). For the Gaussian kernel, k() is not convex, so k is not everywhere positive and §k(0)
is not a probability distribution, so this procedure does not yield a random map for the Gaussian.



Random maps for separable multivariate shift-invariant kernels of the form k(x — y) =
]_[d 1 km (J™—y™]) (such as the multivariate Laplacian kernel) can be constructed in a similar way

if each k., can be written as a convex combination of hat kernels. We apply the above binning pro-
cess over each dimension of R¢ independently. The probability that 2™ and 4™ are binned together

in dimension m is k,,, (|]z™ — y™|). Since the binning process is independent across dimensions, the
probability that x and y are binned together in every dimension is an:l Em(Jz™—y™|) = k(x—y).
In this multivariate case, z(x) encodes the integer vector %' ,... x| corresponding to each bin of the
d-dimensional grid as a binary indicator vector. In practice, to prevent overflows when computing
z(x) when d is large, our implementation eliminates unoccupied bins from the representation. Since
there are never more bins than training points, this ensures no overflow is possible.

We can again reduce the variance of the estimator z(x)’z(y) by concatenating P random binning
functions z into an larger list of features z and scaling by y/1/P. The inner product z(x)'z(y) =
+ 211;1 zp(x)'2p(y) is the average of P independent z(x)’z(y) and has therefore lower variance.

Since z is binary, Hoeffding’s inequality guarantees that for a fixed pair of points x and y, z(x)'z(y)
converges exponentially quickly to k(x,y) as P increases. Again, a much stronger claim is that this
convergence holds simultaneously for all points:

Claim 2. Let M be a compact subset of R with diameter diam(M). Let o« = E[1/5) and let Ly,
denote the Lipschitz constant of k with respect to the L1 norm. With z as above, we have

— (P§2 +In Lik)
Pr| sup |z(x)'z(y) — k(x,y)| <€| > 1—36dPadiam(M)exp | ——% |,
x,yEM d+1

The proof is analogous to that of Claim 1. Since the function z is piecewise constant over M,
M x M can be broken up into a few small rectangular cells so that throughout each cell, k(x,y)
does not change much and z(x) and z(y) do not change at all. With high probability, at the centers
of these cells z(x)'z(y) is close to k(x,y), which guarantees that k(x,y) and z(x)’z(y) are close
throughout M. (See Appendix).

Note that o = [ $p(6) dd = [° k(6) d§is 1, and Ly, = 1 for the Laplacian kernel.

Algorithm 2 Random Binning Features.

Require: A point x € R%. A kernel function k(x,y) = anzl Em(l2™ — y™]), so that p, (A) =
Ak, (A) is a probability distribution on A > 0.
Ensure: A randomized feature map z(x) so that z(x)'z(y) = k(x — y).
forp=1...Pdo
Draw grid parameters 6,u € R% with the pitch §™ ~ p,,, and shift ™ from the uniform
distribution on [0, §™].

Let z return the coordinate of the bin containing x as a binary indicator vector z,(x) =
d d

hash([*57*1, -, [*52 1)
end for

z(x) = \/;[21(X)---ZP(X)]

/

S Experiments

In the first set of experiments, summarized in Table 1, we show that least squares regression on
our random features is a fast way to approximate the training of supervised kernel machines. We
restrict our attention to the CVM because it was shown in [12] to be both faster and more accurate
than other known approaches, including, in most cases, random sampling of datapoints [4]. In
this set of experiments, we trained regressors and classifiers by solving the least squares problem
miny, ||Z'w — y||2 + A||w||%, where y denotes the vector of desired outputs and Z denotes the
matrix of random features. To evaluate the resulting machine on a datapoint x, we can simply
compute w’'z(x).




Dataset Fourier+LS Binning+LS CVM Exact SVM
CPU 3.6% 5.3% 5.5% 11%
regression 20 secs 3 mins 51 secs 31 secs
6500 instances 21 dims D = 300 P = 350 ASVM
Census 5% 7.5% 8.8% 9%
regression 36 secs 19 mins 7.5 mins 13 mins
18,000 instances 119 dims D = 500 P =30 SVMTorch
Adult 14.9% 15.3% 14.8% 15.1%
classification 9 secs 1.5 mins 73 mins 7 mins
32,000 instances 123 dims D = 500 P =30 svmlisht
Forest Cover 11.6% 2.2% 2.3% 2.2%
classification 71 mins 25 mins 7.5 hrs 44 hrs
522,000 instances 54 dims D = 5000 P = 50 1ibSVM
KDDCUP 99 (see footnote) 7.3% 7.3% 6.2% (18%) 8.3%
classification 1.5 min 35 mins 1.4 secs (20 secs) <1s
4,900,000 instances 127 dims D =50 P =10 SVM+sampling

Table 1: Comparison of testing error and training time between ridge regression with random features, Core
Vector Machine, and various state-of-the-art exact methods reported in the literature. For classification tasks,
the percent of testing points incorrectly predicted is reported. For regression tasks, the RMS error normalized
by the norm of the ground truth is reported.

We base our comparison on the five standard large-scale datasets evaluated in [12], excluding the
synthetic datasets. We replicated the results in the literature pertaining to the CVM, SVM!'gh and
1ibSVM using binaries provided by the respective authors.! Despite the simplicity of our approach,
least-squares with random features is faster than, and provides competitive accuracy with, alternative
methods. It also produces very compact functions because only w and a set of O(D) random vectors
or a hash-table of partitions need to be retained. Random Fourier features perform better on the
tasks that largely rely on interpolation. On the other hand, random binning features perform better
on memorization tasks (as measured by the number of support vectors needed by the SVM), because
they explicitly preserve locality in the input space. This difference is most dramatic in the Forest
dataset. Since the decision boundary for this problem is not smooth and requires tens of thousands
of support vectors, the Fourier features perform quite poorly on this dataset.

Figure 3(left) illustrates the benefit of training classifiers on larger datasets. When training data are
easy to obtain, this provides an easy way to improve the accuracy of classifiers without additional
modeling effort. Figure 3(middle) and (right) show that good performance can be obtained even
from a modest number of features.

6 Conclusion

We have presented randomized features whose inner products uniformly approximate many popular
kernels, and demonstrated that these features are a powerful and economical tool for large-scale su-
pervised learning. We showed empirically that providing these features as input to a standard linear
learning algorithm produces results competitive with state-of-the-art kernel machines in accuracy,
training time, and evaluation time.

It is worth noting any mixture of these features (such as combining partitioning with Fourier features
or sampling frequencies from mixture models) can be readily computed and applied to learning
problems.

An exciting direction for future research is to empirically and analytically evaluate random features
on other learning tasks. While we have focused on regression and classification, our features can
be applied to accelerate many other kernel methods, including semi-supervised and unsupervised
learning algorithms. In all of these cases, a significant computational speed-up can be achieved by
first computing random features and then applying the associated linear technique.

"We include KDDCUP 99 results for completeness, but note this dataset is inherently oversampled: training
an SVM (or least squares with random features) on a random sampling of 50 training examples (0.001% of the
training dataset) is sufficient to consistently yield a test-error on the order of 8%. Furthermore, the CVM results
do not appear to be stable. While we were able to replicate the CVM’s 6.2% error rate with the parameters
supplied by the authors, retraining after randomly shuffling the training set results in 18% error and increases the
computation time by an order of magnitude. Even on the original ordering, perturbing the CVM’s regularization
parameter by a mere 15% yields 49% error rate on the test set [14].
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Figure 3: Accuracy on testing dataset continues to improve as the training set grows. On the Forest dataset,
using random binning, doubling the dataset size reduces testing error by up to 40% (left). Error decays quickly
as P grows (middle). Training time grows slowly as P grows (right).
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A Proofs

Lemma 1. Suppose a function k(A) : R — R is twice differentiable and has the form
15" p(6) max(0,1 — %) do. Then p(§) = dk(0).

Proof of Lemma 1. We want p so that

K(A) = / " p(0) max(0, 1 — A/8) dd 3)
0
A 00 oo oo
= / p(d)-0dé +/ p(0)(1—A/d) db = / p(d) db — A/ p(6)/6 do.  (4)
0 A A A
To solve for p, differentiate twice w.r.t. to A to find that k(A) = — S p(6)/6 dé and k(A) =
p(A)/A. O



Proof of Claim 1. Define s(x,y) = z(x)'z(y), and f(x,y) = s(x,y) — k(y,x), and recall that
|f(x,¥)| < 2 and E[f(x,y)] = 0 by construction. Since f, and s are shift invariant, as their
arguments we use A = x —y € M for notational simplicity.

M is compact and has diameter at most twice diam (M), so we can find an e-net that covers Ma
using at most 7' = (4 diam M /)9 balls of radius r [15]. Let {A;}X_, denote the centers of these
balls, and let Ly denote the Lipschitz constant of f. We have |f(A)] < e for all A € My if
|f(Ai)| < e€/2and Ly < 5 for all i. We bound the probability of these two events.

Since f is differentiable, L; = ||V f(A*)||, where A* = arg maxaecm, ||V F(A)]. By linearity of
expectation, E[Vs(A)] = VEk(A), so E[Lfc] = E|Vs(A*) — VE(AY)|? = E||Vs(A%)]]? —

E||VE(AY)|]? < E|Vs(A*)|? < Epllw||*> = o7. By Markov’s inequality, Pr [Lfc Zt} <

E[L7]/t, s0
€ 2royp 2
P [L > 7} < , 5
TR = 2rl — ( € ) ®)
The union bound followed by Hoeffding’s inequality applied to the anchors in the e-net gives
Pr (UL, [f(A)] > €/2] < 2T exp (—De*/8) . (6)

Combining (5) and (6) gives a bound in terms of the free variable r:

. d 2
Pr| sup |f(A)] < 6] >1-2 <4dm;n(/\/l)> exp (—De*/8) — (2T:”> . (7

AeMAa

1
This has the form 1 — x17~% — kyr?. Setting r = (’;—;) "2 turns this to 1 — 2/@"”2 Hf+ , and
assuming that p diam(M) > 1 and diam(M) > 1, proves the first part of the claim. To prove the
second part of the claim, pick any probability for the RHS and solve for D. O

Proof of Claim 2. M can be covered by rectangles over each of which z is constant. Let d,,, be
diam (M) '|
S

the pitch of the pth grid along the mth dimension. Each grid has at most [ bins, and

P overlapping grids produce at most NN,, = 2521 [(haémi(M)] < (P + diam(M) 211;1 5 )
gm pm

partitions along the mth dimension. The expected value of the right hand side is P + P diam(M)a.
By Markov’s inequality and the union bound, Pr [V,_| N,,, < ¢(P 4 P diam(M)a)] > 1 —d/t.

That is, with probability 1 — d/t, along every dimension, we have at most ¢(P + P diam(M)«)
one-dimensional cells. Denote by d,,; the width of the ith cell along the mth dimension and observe

that Z " dp; < diam(M).

We further subdivide these cells into smaller rectangles of some small width r to ensure that the ker-

nel k varies very little over each of these cells. This results in at most Zl 1l Zﬂ < M

small one-dimensional cells over each dimension. Plugging in the upper bound for N,,, settmg

t > L5 and assuming o diam(M) > 1, with probability 1 — d/t, M can be covered with

, d
T< (w) rectangles of side 7 centered at {z;}_;.

The condition |z(x,y) — k(x,y)| < € on M x M holds if |z (Xz,yl) — k(xl,yz)\ < e— Lyr?
and z(x) is constant throughout each rectangle. With r? =
Hoeffding’s inequality gives

Pr[Ui;2(xi, ;) — k(xi,¥5)| > €/2] < 2T% exp (—P€?/8) )
Combining this with the probability that z(x) is constant in each cell gives a bound in terms of ¢:

2L’

d 2L Pe?
Pr sup  |2(x,y) — k(x,y)| < €| >1— = — 2(3tPadiam(M))?*=E exp <E> .
X,yEMxM t € 8

K1

_1
This has the form 1 — k1t~ — kot?. To prove the claim, set t = (%> dﬂ, which results in an

upper bound of 1 — 3Kk aa . O





